Nonparametric Bayesian Machine Transliteration with Synchronous Adaptor Grammars

نویسندگان

  • Yun Huang
  • Min Zhang
  • Chew Lim Tan
چکیده

Machine transliteration is defined as automatic phonetic translation of names across languages. In this paper, we propose synchronous adaptor grammar, a novel nonparametric Bayesian learning approach, for machine transliteration. This model provides a general framework without heuristic or restriction to automatically learn syllable equivalents between languages. The proposed model outperforms the state-of-the-art EMbased model in the English to Chinese transliteration task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models

This paper introduces adaptor grammars, a class of probabilistic models of language that generalize probabilistic context-free grammars (PCFGs). Adaptor grammars augment the probabilistic rules of PCFGs with “adaptors” that can induce dependencies among successive uses. With a particular choice of adaptor, based on the Pitman-Yor process, nonparametric Bayesian models of language using Dirichle...

متن کامل

Improving nonparameteric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars

One of the reasons nonparametric Bayesian inference is attracting attention in computational linguistics is because it provides a principled way of learning the units of generalization together with their probabilities. Adaptor grammars are a framework for defining a variety of hierarchical nonparametric Bayesian models. This paper investigates some of the choices that arise in formulating adap...

متن کامل

Unsupervised Word Segmentation for Sesotho Using Adaptor Grammars

This paper describes a variety of nonparametric Bayesian models of word segmentation based on Adaptor Grammars that model different aspects of the input and incorporate different kinds of prior knowledge, and applies them to the Bantu language Sesotho. While we find overall word segmentation accuracies lower than these models achieve on English, we also find some interesting differences in whic...

متن کامل

Minimally-Supervised Morphological Segmentation using Adaptor Grammars

This paper explores the use of Adaptor Grammars, a nonparametric Bayesian modelling framework, for minimally supervised morphological segmentation. We compare three training methods: unsupervised training, semisupervised training, and a novel model selection method. In the model selection method, we train unsupervised Adaptor Grammars using an over-articulated metagrammar, then use a small labe...

متن کامل

Modeling Perspective Using Adaptor Grammars

Strong indications of perspective can often come from collocations of arbitrary length; for example, someone writing get the government out of my X is typically expressing a conservative rather than progressive viewpoint. However, going beyond unigram or bigram features in perspective classification gives rise to problems of data sparsity. We address this problem using nonparametric Bayesian mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011